Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.02$
R = 0.041	$\Delta \rho_{\rm max}$ = 0.21 e Å ⁻³
wR = 0.042	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.225	Extinction correction: none
1613 reflections	Atomic scattering factors
188 parameters	from International Tables
All H-atom parameters re-	for X-ray Crystallography
fined	(1974, Vol. IV)
$w = 1.155 / [\sigma^2(F)]$	
$+ 0.0006(F)^2$]	

Table 3. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for compound (II) $U_{ca} = \frac{1}{2} \sum_{i} \sum_{i} U_{ii} a_{i}^{*} a_{i}^{*} a_{i}.$

			, ,	
	x	у	z	U_{eq}
NI	0.8810(1)	0.0794 (2)	1.00709 (9)	0.0295 (8)
01	0.8616(1)	-0.0704(1)	1.01849 (8)	0.0372 (8)
02	0.8365(1)	0.0300(1)	0.67821 (7)	0.0396 (8)
03	0.8495(1)	-0.2073(1)	0.64794 (8)	0.0366 (8)
Cl	0.8279(1)	-0.0985 (2)	0.6960(1)	0.029(1)
C2	0.7895 (2)	-0.1507 (2)	0.7730(1)	0.036(1)
C3	0.7941 (1)	-0.0359 (2)	0.8393 (1)	0.032 (1)
C4	0.8985(1)	-0.0021(2)	0.8696(1)	0.032(1)
C5	0.8997(1)	0.1110 (2)	0.9348 (1)	0.0273 (9)
C6	0.9185(1)	0.2682 (2)	0.9185 (1)	0.0276 (9)
C7	0.8671(1)	0.3782 (2)	0.9557 (1)	0.032 (1)
C8	0.8871 (2)	0.5244 (2)	0.9417 (1)	0.041 (1)
С9	0.9592 (2)	0.5621 (2)	0.8910(1)	0.044 (1)
C10	1.0103 (2)	0.4548 (2)	0.8534(1)	0.042 (1)
CII	0.9897 (2)	0.3082 (2)	0.8660(1)	0.036(1)
HO3	0.868 (2)	-0.168 (3)	0.598 (2)	0.072 (8)
HO1	0.848 (2)	-0.070 (2)	1.070(2)	0.057 (7)

Table 4. Geometric parameters (Å, °) for compound (II)

01-N1	1.405 (2)	C5-C6	1.484 (2)
02-C1	1.215(2)	C6—C7	1.391 (3)
03-C1	1.321 (2)	C7—C8	1.382 (3)
C1C2	1.498 (3)	C8-C9	1.380 (3)
C2-C3	1.525 (3)	C9-C10	1.375 (3)
C3-C4	1.525 (3)	C6-C11	1.396 (3)
N1C5	1.285 (2)	C10-C11	1.383 (3)
C4—C5	1.503 (3)		
01-N1-C5	113.2 (1)	C4C5C6	121.5 (1)
O2-C1-O3	123.1 (2)	C5-C6-C7	121.1 (2)
O2-C1-C2	124.1 (2)	C5-C6-C11	120.2 (2)
O3-C1-C2	112.8 (2)	C7-C6-C11	118.8 (2)
C1-C2-C3	114.1 (2)	C6C7C8	120.6 (2)
C2-C3-C4	112.6(2)	C7-C8-C9	120.0 (2)
C3-C4-C5	110.9 (2)	C8-C9-C10	120.2 (2)
N1-C5-C4	122.6 (2)	C9-C10-C11	120.3 (2)
N1-C5-C6	115.9 (2)	C6-C11-C10	120.2 (2)

(I) was obtained by the reaction of 3-benzoylpropionic acid with hydroxylamine hydrochloride in alkaline solution and purified by recrystallization. (II) was obtained by the reaction of 4-benzoylbutyric acid with hydroxylamine hydrochloride in alkaline solution and also purified by recrystallization. Crystals of both (I) and (II) were grown from ethanol/water solution by slow evaporation. Melting points were found to be 400.5-401.5 and 379-380.2 K for (I) and (II), respectively.

Both structures were solved by use of *SHELXS86* (Sheldrick, 1990) and refined by application of *SHELX76* (Sheldrick, 1976). Most of the H atoms were positioned according to geometric criteria but the two hydroxyl H atoms were located from a difference Fourier map.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71394 (21 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1067]

References

- Bachechi, F. & Zambonelli, L. (1972). Acta Cryst. B28, 2489-2494.
- Bachechi, F. & Zambonelli, L. (1973). Acta Cryst. B29, 2598-2600.
- Brehm, L. & Watson, K. J. (1972). Acta Cryst. B28, 3646-3652.
- Gieren, A., Huebner, T. & Ruiz-Perez, C. (1986). Chem. Ztg. 110, 73-78.
- Gratten, T. J. & Whitehouse, J. S. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 11-18.
- Hooft, R. W. W., van der Sluis, P., Kanters, J. A. & Kroon, J. (1990). Acta Cryst. C46, 1133-1135.
- Maurin, J. K., Paul, I. C. & Curtin, D. Y. (1992a). Acta Cryst. C48, 2163-2165.
- Maurin, J. K., Paul, I. C. & Curtin, D. Y. (1992b). Acta Cryst. C48, 2165-2167.
- Padmanabhan, K., Paul, I. C. & Curtin, D. Y. (1989). Acta Cryst. B45, 411-416.
- Patil, A., Curtin, D. Y. & Paul, I. C. (1985). Isr. J. Chem. 25, 320-325.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1994). C50, 81-83

1-Chloro-1,2,2-triphenylethene, C₂₀H₁₅Cl

EBERHARDT HERDTWECK, WOLFGANG ZICHE AND NORBERT AUNER

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85748 Garching, Germany

(Received 24 March 1993; accepted 5 July 1993)

Abstract

All phenyl rings are twisted out of the plane of the ethene framework. The molecular geometry shows no significant difference to that expected.

Comment

The title compound was synthesized by a published method (Crenshaw & Zimmer, 1983) as part of our efforts to obtain vinyl-chlorosilanes (Ziche, Auner & Behm, 1992). It has also found interest as a nonsteroidal antiestrogene (Jellinck & Garland, 1963; Murphy & Sutherland, 1981; Watts, Murphy & Sutherland, 1984).

The introduction of an additional phenyl group and of the Cl atom produces no change in the central C=Cdouble bond [C1=C2 1.323 (3) Å] of the *trans*-stilbene skeleton [e.g. 1.338 Å (Hoekstra, Meertens & Vos, 1975), 1.326 (2) Å (Bouwstra, Schouten & Kroon, 1984)]. Strain is avoided by twisting the phenyl rings out of the plane of the ethene moiety (Cl.C1.C11.C2.C21.C31); the corresponding interplanar angles are 45.80 (8)° (C11-C16, ring 1), 123.45 (7)° (C21-C26, ring 2) and 129.99 (5)° (C31-C36, ring 3). The interplanar angles between the rings are $123.39(7)^{\circ}$ for ring 1/ring 2, 84.27(7)° for ring 1/ring 3 and 82.29 (7)° for ring 2/ring 3. A similar structure has been determined for 1-anisyl-1-bromo-2,2diphenylethene (Kaftori, Apeloig & Rappoport, 1985). The bond length C1=C2 for this compound is 1.314 Å; the only marked difference is found for the torsion angle C1-C2-C31-C36, which is -68.6° compared to $-48.7(3)^{\circ}$ in the present structure.

Fig. 1. An ORTEP drawing (Johnson, 1965) of the title compound with atom numbering (50% probability ellipsoids).

Experimental

Crystal data Mo $K\alpha$ radiation $C_{20}H_{15}Cl$ $M_r = 290.8$ $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 Orthorhombic reflections Pbca $\theta = 17.5 - 24.7^{\circ}$ a = 9.063 (2) Åb = 18.205 (2) Å $\mu = 2.36 \text{ cm}^{-1}$ c = 18.681 (1) Å T = 293 KV = 3082.2 (7) Å³ Prism Z = 8 $0.50 \times 0.50 \times 0.50$ mm $D_x = 1.253 \text{ Mg m}^{-3}$ Colourless

Data collection

Enraf-Nonius CAD-4	$\theta_{\rm max} = 25.0^{\circ}$
diffractometer	$h = 0 \rightarrow 10$
$\omega/2\theta$ scans	$k = 0 \rightarrow 21$
3084 measured reflections	$l = 0 \rightarrow 22$

283 independent reflections	3 standard reflections
283 observed reflections	frequency: 60 min
[I > 0.0]	intensity variation: 1.3%

Refinement

CI CI C2

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.055	$\Delta \rho_{\rm max}$ = 0.20 e Å ⁻³
wR = 0.035	$\Delta \rho_{\rm min}$ = -0.29 e Å ⁻³
S = 3.154	Extinction correction: none
2283 reflections	Atomic scattering factors
250 parameters	from International Tables
All H-atom parameters re-	for X-ray Crystallogra-
fined	phy (1974, Vol. IV, Table
$w = 1/\sigma^2(F_o)$	2.2B)

Data collection: CAD-4 software (Enraf-Nonius, 1988); the ω scan width was $(1.40 + 0.30 \tan \theta)^{\circ} \pm 25\%$ before and after each reflection for background counts. Cell refinement: CAD-4 software; SET4-CELDIM (de Boer & Duisenberg, 1984). Data reduction: STRUXIII (Schmidt, Birkhahn, Massa, Kiprof & Herdtweck, 1987); SDP-Plus (Frenz, 1988). Program(s) used to solve structure: MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Program(s) used to refine structure: SDP-Plus. Software used to prepare material for publication: PLATON92 (Spek, 1990).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	y	z	U_{eq}
Cl	0.30323 (9)	0.17018 (3)	0.29441 (3)	0.0820 (2)
Cl	0.2460 (2)	0.19681 (11)	0.20818 (10)	0.0484 (7)
C2	0.2098 (2)	0.26600 (10)	0.19560 (10)	0.0436 (7)
C11	0.2457 (2)	0.13379 (10)	0.15750 (9)	0.0460 (7)
C12	0.1279 (2)	0.12224 (12)	0.11184 (11)	0.0558 (8)
C13	0.1273 (3)	0.06261 (13)	0.06562 (12)	0.0700 (9)
C14	0.2446 (3)	0.01493 (11)	0.06514 (12)	0.0779 (9)
C15	0.3623 (3)	0.02603 (12)	0.10975 (13)	0.0744 (10)
C16	0.3629 (3)	0.08465 (11)	0.15617 (11)	0.0581 (8)
C21	0.1777 (2)	0.29012 (10)	0.12015 (10)	0.0395 (6)
C22	0.0462 (2)	0.32543 (11)	0.10462 (10)	0.0453 (7)
C23	0.0160 (2)	0.34782 (11)	0.03536 (10)	0.0534 (8)
C24	0.1158 (3)	0.33569 (12)	-0.01866 (10)	0.0569 (8)
C25	0.2466 (3)	0.30113 (12)	-0.00350 (10)	0.0565 (8)
C26	0.2783 (2)	0.27859 (11)	0.06558 (10)	0.0479 (7)
C31	0.2035 (2)	0.32546 (10)	0.25102 (10)	0.0457 (6)
C32	0.2713 (3)	0.39178 (11)	0.23685 (10)	0.0567 (8)
C33	0.2672 (3)	0.44823 (12)	0.28678 (12)	0.0737 (9)
C34	0.1948 (3)	0.43775 (13)	0.35084 (12)	0.0824 (9)
C35	0.1275 (3)	0.37306 (15)	0.36495 (12)	0.0853 (10)
C36	0.1307 (3)	0.31659 (13)	0.31569 (11)	0.0664 (9)

Table 2. Bond lengths (Å) and angles (°)

	0		
Cl-Cl	1.760 (2)	C2-C21	1.505 (3)
C1-C2	1.323 (3)	C2-C31	1.499 (3)
CI-CII	1.487 (3)		
Cl-Cl-C2	119.86 (15)	C1-C2-C21	119.49 (17)
C1-C1-C11	111.75 (14)	C1-C2-C31	125.06 (17)
C2-C1-C11	128.39 (17)		

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71469 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1043]

References

Boer, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.Bouwstra, J. A., Schouten, A. & Kroon, J. (1984). Acta Cryst. C40, 428–431.

Crenshaw, M. D. & Zimmer, H. (1983). J. Org. Chem. 48, 2782-2784.

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1988). Enraf-Nonius SDP-Plus Structure Determination Package. Version 4.0. Enraf-Nonius, Delft, The Netherlands.
- Hoekstra, A., Meertens, P. & Vos, A. (1975). Acta Cryst. B31, 2813-2817.
- Jellinck, P. H. & Garland, M. (1963). J. Endocrinol. 40, 131-132.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kaftori, K., Apeloig, Y. & Rappoport, Z. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 29-37.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Murphy, L. C. & Sutherland, R. L. (1981). Biochem. Biophys. Res. Commun. 100, 1353-1360.
- Schmidt, R. E., Birkhahn, M., Massa, W., Kiprof, P. & Herdtweck, E. (1987). STRUXIII. Ein Programmsystem zur Verarbeitung von Röntgendaten. Univ. of Marburg, and Technischen Univ. München, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Watts, C. K. W., Murphy L. C. & Sutherland, R. L. (1984). J. Biol. Chem. 259, 4223-4229.
- Ziche, W., Auner, N. & Behm, J. (1992). Organometallics, 11, 2494-2499.

Acta Cryst. (1994). C50, 83-85

Structure of Isopropylidene Sedoheptulosan

JÜRGEN KOPF AND DIRK ABELN

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

PETER KÖLL

Fachbereich Chemie, Organische Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany

(Received 24 March 1993; accepted 7 July 1993)

Abstract

The title compound, 2,7-anhydro-4,5-*O*-isopropylidene- β -D-*altro*-2-heptulopyranose, C₁₀H₁₆O₆, has a pyranoid conformation which is a distorted *E*₀ conformation with *Q* = 0.609 (1) Å, θ = 147.4 (1)° and Φ = 188.1 (3)° [Cremer & Pople (1975). *J. Am. Chem. Soc.* **97**, 1354–1358].

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved The structure is stabilized by hydrogen bonds. The absolute structure, determined through the Flack parameter, x = -0.08 (14) [Flack (1983). *Acta Cryst.* A**39**, 876-881], corresponds to the known chirality of the title compound (Friedel opposites collected and not merged).

Comment

The title compound was synthesized according to known procedures (Haskins, Hann & Hudson, 1952) and crystals melting at 500 K were obtained from methanol by slow evaporation. The positions of all H atoms were refined with no distance restraints. Both hydroxyl groups O1—H10 and O3—H20 form intermolecular hydrogen bonds. Details of the hydrogen-bonding scheme are given in Table 3. Of the above hydrogen bonds, the latter results in an infinite one-dimensional chain along [0 0 1]. Other distances and angles are generally as expected.

It should be mentioned that this structure is of the 1,6anhydro- β -D-glycopyranose type and therefore the puckering parameters, Q = 0.609 (1) Å, $\theta = 147.4 (1)^{\circ}$ and $\Phi = 188.1 (3)^{\circ}$ (Cremer & Pople, 1975), can be compared with these compounds. A similar conformation of the pyranoid ring, as found in the title compound, is reported for 1,6-anhydro-3,4-*O*-isopropylidene- β -Dtalopyranose (Panagiotopoulos, 1974) and 1,6-anhydro-3,4-*O*-isopropylidene- β -D-galactopyranose (Cano, Foces-Foces, Jimenez-Barbero & Martin-Lomas, 1984), and some selected benzylidene derivatives (Cano, Foces-Foces, Jimenez-Barbero, Bernabe & Martin-Lomas, 1986).

The conformation of the 2,7-anhydro five-membered ring is Q = 0.396 (1) Å and $\Phi = 263.3$ (2)°. For the other

Fig. 1. SCHAKAL88 drawing (Keller, 1986) of the molecular conformation and atomic numbering scheme.

83